If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x=37
We move all terms to the left:
x^2+5x-(37)=0
a = 1; b = 5; c = -37;
Δ = b2-4ac
Δ = 52-4·1·(-37)
Δ = 173
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{173}}{2*1}=\frac{-5-\sqrt{173}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{173}}{2*1}=\frac{-5+\sqrt{173}}{2} $
| 3x+1+7-11=40 | | 8-7b=-8b | | -2+7.5x=-8+6x | | 5m+6=-14 | | (4k+5)(6k+10)=115 | | 10x+20=5x+60 | | 10(2)=x | | 25=-8n+1 | | 65x=60x+10 | | -2+5y-15=0 | | 10(2=x | | 0.5(d–2)=0.6d+2–7+0.4d | | x/14=-1.5 | | -6.48-6.5m+18.38=-8.3m-10.6 | | 9x+18-3x=60 | | C=25h+503h | | 2r+4=-(-7r+6) | | -94+5x=50-7x | | 5(x+5=41+3x | | -22=-x-15 | | r=9+2/5 | | −8=32 x | | -0.68-9.1j=-9j | | 17=7n | | (7x-4)+(5x10)=180 | | 37+0.24m=64.12 | | 3(-2m+1)+5=32 | | $5t+16=6-5t$. | | 4x−3(x+1)=3x+11 | | -2/3y+5=59 | | u-1.6=5.65 | | -s-9=2s |